March 1994 Revised November 1999 74ABT2240 Octal Buffer/Line Driver with 25 Ω Series Resistors in the Outputs

FAIRCHILD

SEMICONDUCTOR TM

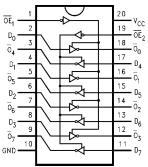
74ABT2240 Octal Buffer/Line Driver with 25Ω Series Resistors in the Outputs

General Description

The ABT2240 is an inverting octal buffer and line driver designed to drive the capacitive inputs of MOS memory drivers, address drivers, clock drivers, and bus-oriented transmitters/receivers.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.

Features


- Guaranteed latchup protection
- High impedance glitch-free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability

Ordering Code:

Order Number	Package Number	Package Description			
74ABT2240CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body			
74ABT2240CSJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74ABT2240CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide			
74ABT2240CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
Devices also available in Tape and Reel. Specify by appending letter suffix "X" to the ordering code.					

Schematic of Each Output

Pin Descriptions

Pin Names	Descriptions			
$\overline{OE}_1, \overline{OE}_2$	Output Enable Input (Active LOW)			
D ₀ -D ₇	Data Inputs			
$\overline{O}_0 - \overline{O}_7$	Outputs			

Truth Table

OE ₁	I ₀₋₃	0 ₀₋₃	\overline{OE}_2	I ₄₋₇	0 ₄₋₇
Н	х	Z	Н	х	Z
L	н	L	L	н	L
L	L	н	L	L	Н

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

Z = High Impedance

Output

Absolute Maximum Ratings(Note 1)

Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-off State	-0.5V to 5.5V
in the HIGH State	–0.5V to V_{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
DC Latchup Source Current	
(Across Comm Operating Range)	–300 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

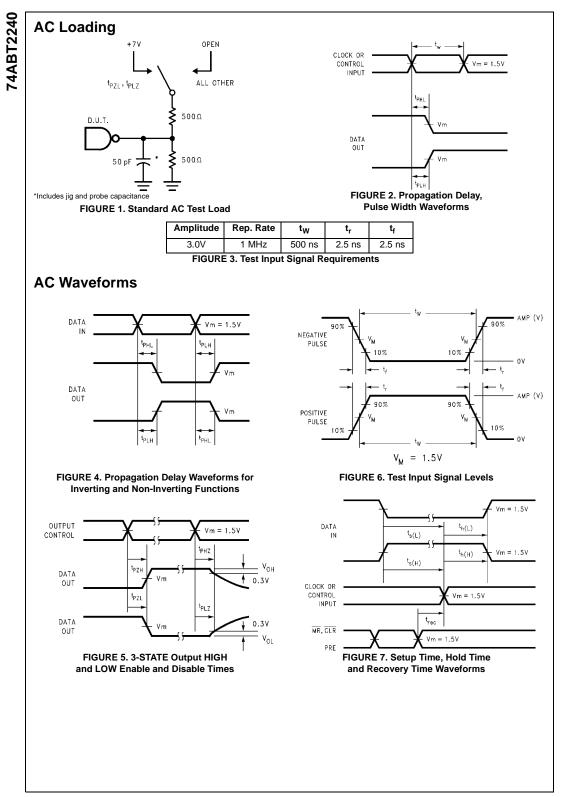
DC Electrical Characteristics

Symbol		Parameter	Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Volta	age	2.0			V		Recognized HIGH Signal
VIL	Input LOW Volta	ge			0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Dio	de Voltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH		2.5			V	Min	$I_{OH} = -3 \text{ mA}$
	Voltage		2.0			V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Vol	tage			0.8	V	Min	I _{OL} = 15 mA
I _{IH}	Input HIGH Curr	ent			1	μA	Max	V _{IN} = 2.7V (Note 3)
					1	μυτ	max	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Curr	ent Breakdown Test			7	μA	Max	V _{IN} = 7.0V
Ι _{IL}	Input LOW Curre	ent			-1 -1	μΑ	Max	$V_{IN} = 0.5V$ (Note 3) $V_{IN} = 0.0V$
V _{ID}	Input Leakage To	est				V	0.0	I _{ID} = 1.9 μA All Other Pins Grounded
I _{OZH}	Output Leakage	Current			10	μA	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OEn} = 2.0V$
I _{OZL}	Output Leakage	Current			-10	μA	0-5.5V	$V_{OUT} = 0.5V; \overline{OEn} = 2.0V$
los	Output Short-Cir	cuit Current			-275	mA	Max	$V_{OUT} = 0.0V$
ICEX	Output HIGH Le	akage Current			50	μA	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Te	est			100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply C	urrent			50	μA	Max	All Outputs HIGH
I _{CCL}	Power Supply C	urrent			30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply C	urrent			50	μA	Max	$\overline{OEn} = V_{CC}$
								All Others at V _{CC} or GND
ICCT	Additional	Outputs Enabled			1.5	mA		$V_{I} = V_{CC} - 2.1V$
	I _{CC} /Input	Outputs 3-STATE			1.5	mA	Max	Enable Input $V_I = V_{CC} - 2.1V$
		Outputs 3-STATE			50	μΑ		Data Input $V_I = V_{CC} - 2.1V$
								All Others at V _{CC} or GND
ICCD	Dynamic I _{CC} No Load (Note 3)		1			mA/		Outputs OPEN
					0.1	MHz	Max	OEn = GND (Note 4)
								One Bit Toggling, 50% Duty Cycle

Note 3: Guaranteed, but not tested.

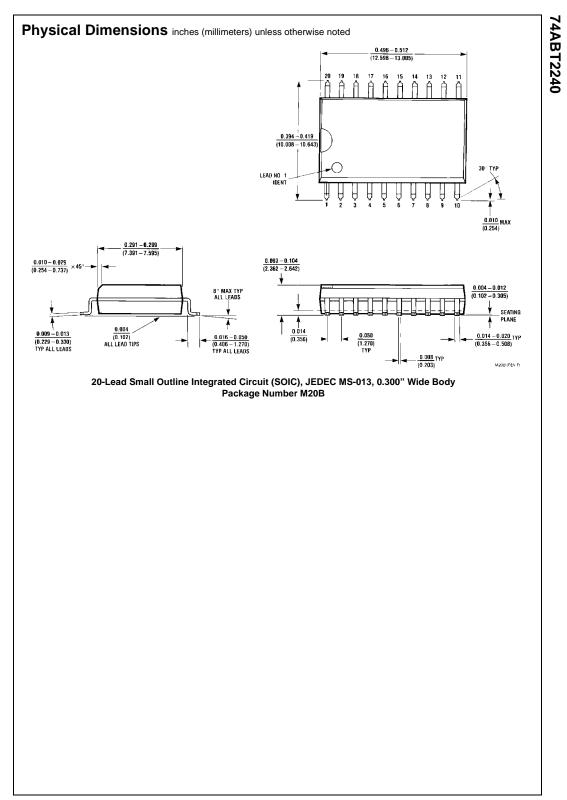
Note 4: For 8 bits toggling, $I_{CCD} < 0.8 \mbox{ mA/MHz}.$

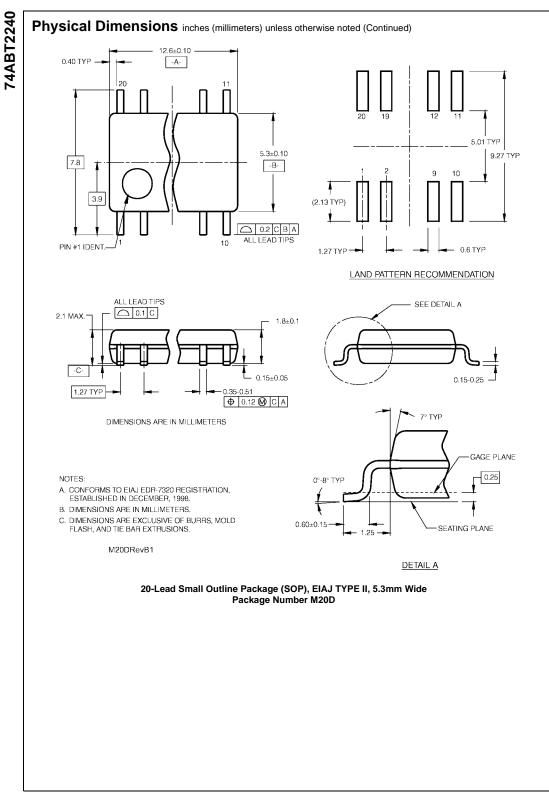
AC Electrical Characteristics

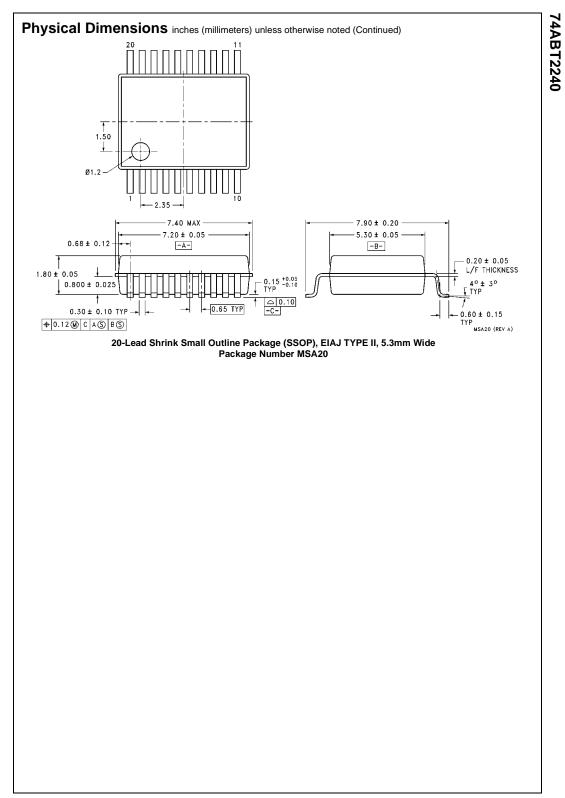

AC Electrical Characteristics								
Symbol	Parameter		T _A = +25°C V _{CC} = +5V C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$		
		Min	Тур	Max	Min	Max		
t _{PLH}	Propagation	1.0		4.9	1.0	4.9	20	
t _{PHL}	Delay Data to Outputs	1.5		5.3	1.5	5.3	ns	
t _{PZH}	Output Enable	1.5		6.6	1.5	6.6		
t _{PZL}	Time	2.7		6.9	2.7	6.9	ns	
t _{PHZ}	Output Disable	1.9		6.4	1.9	6.4		
t _{PLZ}	Time	1.9		6.4	1.9	6.4	ns	

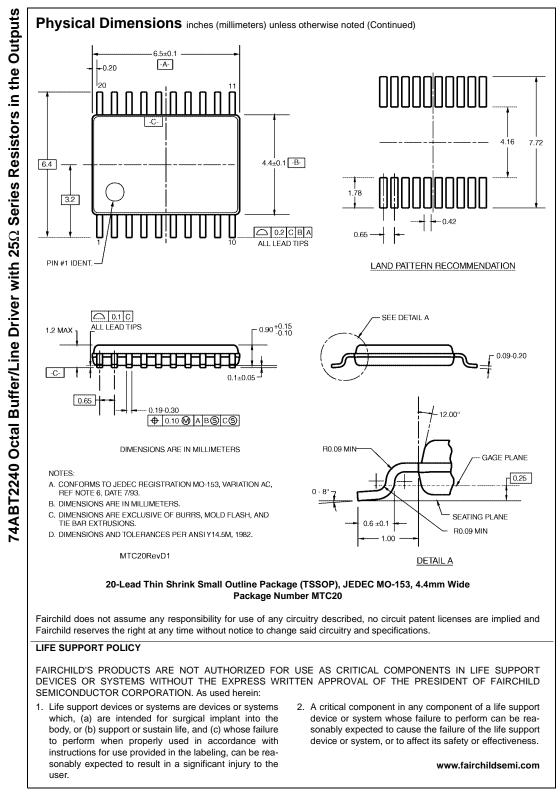
Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
CIN	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 5)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$


Note 5: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.


www.fairchildsemi.com


www.fairchildsemi.com


4

www.fairchildsemi.com

www.fairchildsemi.com